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Wetting-induced effective interaction potential between spherical particles

C. Bauer, T. Bieker, and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany

~Received 9 February 2000!

Using a density-functional-based interface displacement model, we determine the effective interaction po-
tential between two spherical particles which are immersed in a homogeneous fluid such as the vapor phase of
a one-component substance or theA-rich liquid phase of a binary liquid mixture composed ofA andB particles.
If this solvent is thermodynamically close to a first-order fluid-fluid phase transition, the spheres are covered
with wetting films of the incipient bulk phase, i.e., the liquid phase or theB-rich liquid, respectively. Below a
critical distance between the spheres their wetting films snap to a bridgelike configuration. We determine phase
diagrams for this morphological transition, and analyze its repercussions on the effective interaction potential.
Our results are accessible to various types of force microscopy and scattering experiments, and may be relevant
to flocculation in colloidal suspensions.

PACS number~s!: 68.45.Gd, 68.10.2m, 82.70.Dd
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I. INTRODUCTION

In view of understanding a particular phenomenon in c
densed matter, theory is supposed to identify the corresp
ing relevant degrees of freedom and to provide the effec
interaction between them by, approximately, integrating
the remaining ones so that one is left with a managea
model. It is a major challenge to determine the effect
interactions because that requires calculating the parti
function of the whole system under the constraint of a fix
configuration of the relevant degrees of freedom. The ben
of carrying out this constrained calculation, which in gene
is more difficult than the original full problem, is twofold
First, there is a gain in transparency by describing the sys
in terms of relevant degrees of freedom. Second, it is ty
cally less risky to apply approximations for the partial tra
because they only concern the less relevant degrees of
dom.

The determination of the phase behavior and of the st
tural properties of multi-component fluids represents a c
study for this general approach. If the composing particles
the mixture are of a comparable size and shape, their deg
of freedom have to be treated on equal footing. The w
developed machinery of liquid state theory@1# offers various
techniques to cope with this problem. However, these te
niques fail to yield reliable results if, e.g., one componen
much larger than the others; in this case numerical sim
tions become inefficient, and integral theories lose their
curacy. Colloidal suspensions are a paradigmatic case
such highly asymmetric solutions. For their description th
difficulties can be overcome by resorting to a general sche
laid out at the beginning with the positions of the colloid
particles as the relevant degrees of freedom. Accordingly
degrees of freedom of the small solvent particles are to
integrated out for a fixed configuration of the colloidal pa
ticles, which we assume to be smooth, monodispe
spheres. At sufficiently low concentrations of the suspen
particles this leads to an effective pair potential betwe
them. In many cases the effective potential resembles
bare one, i.e., the one in the absence of the solvent, but
modified, effective interaction parameters which depend
PRE 621063-651X/2000/62~4!/5324~15!/$15.00
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the thermodynamic variables of the system such as pres
and temperature.

The effective pair potential acquires additional new fe
tures if the solvent is enriched with particles of medium s
such as, e.g., polymers. If the colloidal particles come cl
to each other the depletion zones around them, generate
the finite size of the medium particles, overlap, leading to
entropically driven attraction of the colloidal particles@2,3#.
Correlation effects can modify the form and the range
these depletion forces considerably@4,5#. These effective po-
tentials have indeed turned out to be successful in descri
the phase behavior of colloidal suspensions@6#.

Qualitatively new aspects arise if the solvent particles
hibit a strong cooperative behavior of their own such a
phase transition which proliferates to the effective poten
between the large particles. If the solvent undergoes a c
tinuous phase transition, thermal Casimir forces between
large particles are induced due to the geometrical constr
they pose for the critical fluctuations@7,8#. Such forces are
long ranged, and have a strong influence on the phase be
ior of the colloidal particles@9,10#. If the solvent is thermo-
dynamically close to a first-order phase transition, wett
phenomena@11# can occur at the surfaces of the dissolv
particles~see Ref.@12#, and references therein, for a system
atic analysis of wetting transitions at the surface of a sin
sphere or cylinder providing the necessary prerequisite
the present study of the interaction between two such
jects!. If the bulk phase of the solvent is the vapor phase o
one-component fluid, the surfaces of the large spheres ca
covered by a liquidlike wetting film. This situation corre
sponds to aerosol particles floating in a vapor. If the b
phase of the solvent is theA-rich liquid phase of a binary
liquid mixture composed of~small! A andB molecules, the
dissolved colloidal particles can be coated by theB-rich liq-
uid phase of the mixture. If the wet spheres approach e
other, at a critical distance the two wetting films snap to
bridgelike structure. This morphological phase transition
expected to yield a nonanalytic form of the effective intera
tion potential between the large spheres. This nonanalyti
demonstrates that cooperative phenomena among thos
grees of freedom which are integrated out can leave cle
5324 ©2000 The American Physical Society
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visible fingerprints on the effective interaction between
remaining relevant degrees of freedom. The study of
kind of profileration is not only of theoretical interest in i
own right, but seems to play an important~albeit not exclu-
sive @13#! role for the experimentally observed flocculatio
of colloidal particles dissolved in a binary liquid mixtur
close to its demixing transition intoA rich andB rich liquid
phases@14–18#. This observation has triggered numero
theoretical efforts devoted to various possible explanati
of it. Since they are reviewed in Sec. I of Ref.@12#, and more
recently in Ref.@19#, the interested reader is referred to the
and we refrain from repeating this discussion here.

In our present analysis of this problem we apply dens
functional theory@20# which offers two advantages. Firs
this technique is particularly well suited to calculating,
required here, free energies under constraints. Second,
lows one to keep track of the basic molecular interact
potentials of the system. We focus our interest on thermo
namic states of the solvent which are sufficiently far aw
from its critical point so that the emerging liquid-vapor i
terfaces of the wetting films exhibit only a small widt
Therefore, we can apply the so-called sharp-kink approxim
tion, which considers only steplike variations of the solve
density distribution, and thus leaves the interface position
the main statistical variable. This approximation has turn
out to be surprisingly accurate for a description of wetti
phenomena@21#. Our analysis extends and goes beyond p
vious efforts@22,23#, which are based on a similar interfac
displacement model grounded on a phenomenological
satz. Whereas Refs.@22# and @23# aimed at mapping out the
phase diagram in terms of interaction parameters for
bridging transition mentioned above, we focus on the eff
tive interaction potentials between the wet spheres, which
not presented in Refs.@22# and @23#, and on their micro-
scopic origin.Inter alia, this allows us to compare the effec
tive interaction potential between the colloidal particles w
the bare one, i.e., in the absence of the solvent, and thu
comment on the quantitative relevance of the solve
mediated interaction. Moreover, we present the phase
gram of the system in terms of the thermodynamic variab
temperature and chemical potential which is also not c
tained in Refs.@22# and @23#.

In Sec. II we describe the implementation of a simp
version of density-functional theory for the present proble
For reasons of simplicity we confine our analysis to t
liquid-vapor coexistence of a one-component solvent;
generalization to a binary solvent is straightforward. In S
III we present some examples for the numerically calcula
wetting film morphologies, and discuss a phase diagram
the aforementioned morphological transition, and in Sec.
we analyze the effective wetting-induced interaction pot
tial between the spheres as a function of the distance betw
the spheres and the undersaturation. The experimenta
evance of our model calculations is discussed in Sec. V
Sec. VI summarizes our main results. The Appendix conta
some technical details.

II. DENSITY FUNCTIONAL THEORY

A. Model

We consider two identical, homogeneous, and smo
spherical particles of radiusR whose centers of mass a
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separated by a distanceD ~see Fig. 1!. They are immersed in
a fluid of particles of number densityr(r ) which interact via
a Lennard-Jones potential

f~r !54eXS s

r D 12

2S s

r D 6C. ~2.1!

The system is symmetric with respect to a rotation arou
the axis which connects the centers of mass of the sph
~Fig. 1!, and with respect to a reflection at a plane in t
middle between the spheres that is perpendicular to the s
metry axis. Since we work in a grand canonical ensem
and the fluid particles are subject to the external poten
exerted by the spheres, the equilibrium number density p
file of the fluid particles exhibits these symmetries to
Therefore, we describe the system in cylindrical coordina
(r' ,f,z), with the z axis being the symmetry axis of th
system. The two centers of mass of the spheres are locat
(r 50,z56D/2), such that the spheres occupy the volum
S65$r (r' ,f,z)5(x,y,z)5(r'cosf,r'sinf,z)PR3u6D/2
2R<z<6D/21R,Ar'

2 1(z7D/2)2<R%. The external po-
tential exerted by both spheres on each individual fluid p
ticle is

FIG. 1. Wetting film~thick full line! surrounding two identical
homogeneous spheres of radiusR which are separated by a distanc
D. The whole system is rotationally symmetric around thez axis
which runs through both centers of mass. The position of the liqu
vapor interface which encloses both spheres is described by a f
tion h(z), i.e., in cylindrical coordinates the sharp interface is giv
by the manifold$r (r' ,f,z)5(r'cosf,r'sinf,z)PR3ur'5h(z)%.
The origin of the coordinate system is in the middle between
two spheres so that their centers are located atz56D/2. a5D
22R is the shortest separation between the surfaces of the sph
Within the so-called sharp-kink approximation this interface se
rates a region of constant liquid number densityr l from the sur-
rounding bulk vapor phase of constant number densityrg . Close to
the surfaces of the spheres the repulsive interaction leads to a
ume with thicknessds excluded for the centers of the fluid particle
For sufficiently large values ofD the bridgelike wetting film con-
figuration shown in~a! breaks up into two disjunct pieces, so th
h(z)50 for a finite interval aroundz50 ~b!.
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v tot~r' ,z;R!5v„Ar'
2 1~z2D/2!2;R…

1v„Ar'
2 1~z1D/2!2;R…, ~2.2!

where†see Eq.~A4! in Ref. @12#‡

v~r ;R!5
9

8
u9S 1

r ~r 1R!8
2

1

r ~r 2R!8D
2u9S 1

~r 1R!9
2

1

~r 2R!9D
2

3

2
u3S 1

r ~r 1R!2
2

1

r ~r 2R!2D
1u3S 1

~r 1R!3
2

1

~r 2R!3D ~2.3!

is the interaction potential between a single sphere of ra
R and a fluid particle at a distancer .R from the center of
mass of the sphere. In a continuum description,v(r ;R) fol-
lows from an integration of the Lennard-Jones potential

fs f~r !54es fXS ss f

r D 12

2S ss f

r D 6C ~2.4!

between a molecule of thespherical substrate and af luid
particle. The subscripts f denotes the parameters of the d
persion interaction between a particle in the fluid and a p
ticle in the spheres. One hasu35(2p/3)es frsss f

6 and u9

5(4p/45)es frsss f
12 where rs is the number density of the

particles forming the spheres.@Many colloidal particles ex-
hibit an even more complicated substrate potential beca
they are coated by a material different from their core so t
they are no longer radially homogeneous as assumed for
~2.3!.#

Within our density-functional approach, the equilibriu
particle number density distribution of the inhomogeneo
fluid surrounding the spheres in a grand canonical ensem
minimizes the functional@20#

V„@r~r !#;T,mu…

5E
V f

d3r @ f HS„r~r !,T…1„v tot~r !2m…r~r !#

1
1

2EVf

E
V f

d3r d3r 8w~ ur2r 8u!r~r !r~r 8!. ~2.5!

Vf5V\(S1øS2) is the volume accessible for the fluid pa
ticles, andV is the total volume of the system;V→R3 in the
thermodynamic limit. Equation~2.5! does not include the
bare interaction potentialF(D;R) ~see Sec. V! between the
solid spheres, separated by vacuum, generated by the di
sion forces between the molecules forming the two sphe
f HS(r,T) is the free energy density of a hard-sphere fluid
number densityr at temperatureT. In Eq. ~2.5!, the hard-
sphere reference fluid is treated in the local density appr
mation. We apply the Weeks-Chandler-Andersen proced
@24# to split f(r ) into an attractive partfatt(r ) and a repul-
s

r-

se
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q.

s
le

er-
s.
f
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sive partf rep(r ). The latter gives rise to an effective, tem
perature dependent hard-sphere diameter

d~T!5E
0

21/6s
drX12expS 2

f rep~r !

kBT D C, ~2.6!

which is inserted into the Carnahan-Starling expression@25#

f HS~r,T!5kBTrS ln~rl3!211
4h23h2

~12h!2 D ~2.7!

for the free energy densityf HS of the hard-sphere fluid
whereh5(p/6)r„d(T)…3 is the dimensionless packing frac
tion and l is the thermal de Broglie wavelength. We a
proximate the attractive part of the interactionfatt(r ) by

w~r !5
4w0s3

p2
~r 21s2!23, ~2.8!

with

w05E
R3

d3r w~r !5E
R3

d3r fatt~r !52
32

9
A2pes3,

~2.9!

in order to simplify subsequent analytical calculations. T
double integral in Eq.~2.5! takes into account this attractiv
interaction within the mean-field approximation.

In the bulk the particle densityrg ~whereg5 l ,g denotes
the liquid and vapor phase, respectively! is spatially con-
stant, leading to@see Eq.~2.5!#

Vb~rg ,T,m!5 f HS~rg ,T!1
1

2
w0rg

22mrg ~2.10!

for the grand canonical free energy density of thebulk fluid.
Minimization of Vb with respect torg yields the equilibrium
densities. The linem5m0(T) of bulk liquid-vapor coexist-
ence and the two bulk densitiesr l and rg at coexistence
follow from

]Vb

]r U
r5rg

5
]Vb

]r U
r5r l

50 and Vb~rg!5Vb~r l !.

~2.11!

For mÞm0, i.e., off coexistence, only the liquid phase or th
vapor phase is stable. In this case the density of the m
stable phase corresponds to the second local minimum
Vb .

B. General expressions for the contributions to the effective
interaction potential

Henceforth we consider the case that the substrate is
ficiently attractive so that the liquid phase is preferentia
adsorbed. Therefore, if in the bulk the vapor phase is sta
(m<m0), the fluid density is significantly increased in th
vicinity of both spheres. In the spirit of the so-called sha
kink approximation~see Sec. I and Ref.@21#! we assume tha
a thin film of constant densityr l but with locally varying
thickness is adsorbed at the surfaces of the spheres, sep
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ing the spheres from the bulk vapor phase of densityrg .
This wetting film encapsulating both spheres is character
by a functionh(z):

r~r !5r~r' ,f,z!

5Q„r'2~R1ds!…@Q„h~z!2r'…r l1Q„r'2h~z!…rg#,

~2.12!

whereQ denotes the Heaviside step function. The lengthds
takes into account the excluded volume at the surfaces o
spheres, which the centers of the fluid particles cannot p
etrate due to repulsive forces. The profileh(z) as given by
Eq. ~2.12! can describe both a configuration in which t
wetting films surrounding each sphere are connected b
liquid bridge as well as the configuration in which bo
single spheres are surrounded by disjunct wetting layers
the latter configuration there is a region aroundz50 with
h(z)50.

Insertingr(r' ,f,z) from Eq.~2.12! into the functionalV
in Eq. ~2.5! leads to a decomposition ofV5V(Vf)Vb(rg)
1VS into a bulk and subdominant contributions;V(Vf) is
the volume measure ofVf . The bulk contribution is
V(Vf)Vb(rg) @with Vb given by Eq. ~2.10!#, and corre-
sponds to the vapor phase which is stable in the bulk.
subdominant contribution is

VS@h#5Vsl1Vex@h#1Vei@h#1V lg@h#, ~2.13!

where onlyVsl is independent ofh(z), and the other three
contributions are functionals ofh(z). Since we have no
found an indication for spontaneous symmetry breaking
the following we discuss only symmetric configurations w
h(z)5h(2z),

Vex@h~z!#5V~L!„Vb~r l !2Vb~rg!…, ~2.14!

where

V~L!52pE
0

Lz
dz h2~z!2

8p

3
R3 ~2.15!

is an excess contribution which takes into account that
volumeL5K\(S2øS1) is filled with the metastable liquid
instead of the vapor phase;K5$r (r' ,f,z)PR3ur'<h(z)%
is the volume enclosed by the liquid-vapor interface.„The
excluded volume due tods enters intoVsl @see Eq.~2.21!#….
This free energy contributionVex vanishes at the two-phas
coexistencem5m0(T) @compare Eq.~2.11!#. 2Lz is the ex-
tension of the total volume of the systemV in thez direction;
Lz→` in the thermodynamic limit andh(z.zmax)50 with
zmax!Lz ,

Vei@h~z!#52DrE
V2\K2

d3r @r l„t~r ,S2!1t~r ,S1!…

2v tot~r !#, ~2.16!

can be interpreted as the integratedeffective interaction be-
tween the spheres and the liquid-vapor interface describe
h(z): Dr5r l2rg . V2 is that part of the volumeV with z
,0 ~we note again thatV2→R2

3 in the thermodynamic limit
d

he
n-

a
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e
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which is always considered here!; analogously,K2 is the
part of the setK with z,0. In Eq. ~2.16! we introduce the
interaction potential

t~r ;M!5E
M

d3r 8w~ ur2r 8u! ~2.17!

between a fluid particle atr and a regionM ~with r¹M)
homogeneously filled with the same fluid particles@analo-
gous to the functiont(z) introduced in Refs.@11# and@21# in
the case of a planar substrate#. v tot is the total interaction
potential between a fluid particle and both spheres@see Eq.
~2.2!#. Finally,

V lg@h~z!#52~Dr!2E
V2\K2

d3r „t~r ;K2!1t~r ;K1!…

~2.18!

is the free energy contribution from the freeliquid-gas inter-
face. It is anonlocal functional of h(z) in contrast toVex
andVei whose dependence onh(z) enters only via the inte-
gration volumeK2 . The local approximation thereof, which
is provided by the gradient expansion of Eq.~2.18!, is

V lg
loc54ps lg

(p)E
0

Lz
dz h~z!A11S dh

dzD
2

. ~2.19!

In Eq. ~2.19!,

s lg
(p)52

1

2
~Dr!2E

0

`

dzE
z

`

dz8E
R2

d2r i w~Ar i
21z82!

~2.20!

is the interfacial tension of a planar, free liquid-vapor inte
face in the sharp-kink approximation. We note that, stric
speaking, the surface tension of a curved liquid-vapor in
face depends on the local radius of curvature~see Fig. 2 in
Ref. @12#, and references therein concerning the Tolm
length!. This curvature dependence is omitted in the lo
model presented here. However, for spheres of radiuR
>20s, as considered henceforth, the curvature correctio
less than 1%. Similar arguments hold for the deviation of
actual liquidlike density in the wetting film from the bul
valuer l .

For our choice of interaction potentials@Eqs. ~2.1! and
~2.4!# a tedious calculation leads to explicit expressions
the contributionsVei andV lg which are given in the Appen
dix. The remaining contribution

Vsl52r lEV2\S2

d3r @r l„t~r ,S2!1t~r ,S1!…22v tot~r !#

2Vb~r l !
8p

3
„~R1ds!

32R3
…, ~2.21!

which is independent ofh(z), is thesphere-liquid interfacial
free energy corresponding to the interface between
spheres and the liquid phase. The last term in Eq.~2.21!
takes into account the excluded volumes at the surface
the spheres. In the limit of large separationsD, one has
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Vsl~D→`!22Vsl
(1);D26 ~2.22!

with the sphere-liquid interfacial free energyVsl
(1) of a single

sphere immersed in the liquid phase. The leading power
;D26 in Eq. ~2.22! can be inferred from the following con
sideration: if present, the second sphere displaces a sphe
volume from the homogeneous liquid phase, so that the
energy of the interaction of the first sphere with the bu
liquid is reduced by the interaction free energy of that sph
with the displaced spherical liquid volume. This latter inte
action decays asD26 for large separationsD, at which the
dispersion interaction between two spherical objects
sembles the dispersion interaction between two pointlike p
ticles. @Here, as before, we have not yet taken into acco
the bare interaction potentialF(D;R) between the two solid
spheres; but see, for comparison, Sec. V.#

Up to the bulk contribution the grand canonical potent
of the system is the minimum ofVS@h(z)# with respect to
the profileh(z):

VS5VS~D;R!5 min
$h(z)%

„VS@h~z!#…. ~2.23!

Thus the equilibrium interface morphologyh(z) minimizes
VS@h(z)# which includes the contributionsVex@h(z)#,
Vei@h(z)#, V lg@h(z)#, and Vsl . The functional used in
Refs. @22# and @23# @Eq. ~1! in both references# is, albeit
formulated in another coordinate system and using a m
phenomenological ansatz for the basic interaction potent
essentially identical with the sum (V lg

loc1Vex1Vei)@h(z)#.
However, this model description incorporates neither
bare dispersion interaction of the two spheres~c.f. Sec. V!
nor the free energy contributionVsl which describes the
sphere-liquid interfacial free energy. We emphasize that
consideration of the contributionVsl—which does not de-
pend onh(z)—is not essential for the determination of th
equilibrium wetting film morphology, and hence it is n
relevant for the thermodynamic phase diagram of thin-th
and bridging transitions~Fig. 2 in Ref.@23#! for a fixedsepa-
ration D between the spheres. But the termVsl is crucial to
theshapeof the effective, wetting-induced interaction pote
tial between the spheres, i.e., its dependence onD @see Eq.
~2.22!#.

III. MORPHOLOGY OF THE WETTING LAYERS

A. Interface profiles

The actual wetting layer morphologyh(z) follows from
numerical minimization of the functionalVS@h(z)# @Eq.
~2.13!# for a given temperatureT and undersaturationDm
5m0(T)2m, with the contributionsVex @Eq. ~2.14!#, Vei
@Eq. ~2.16!#, Vsl @Eq. ~2.21!#, and V lg @Eq. ~2.18 within
nonlocal theory and Eq.~2.19! for local theory#. Within a
range of parameters (T,Dm) the numerical minimization
yields two different solutions forh(z), one with a liquid
bridge and one without, depending on the initial functi
h(z) used in the iteration scheme for the minimization. F
small separationsa!2R only the solution which exhibits a
liquid bridge is stable, whereas for large separationsa@2R
only the solution without bridge minimizesVS . For large
distancesD the minimization consistently yields twice th
w

ical
e

e
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-
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e

e

k

r

result known for a single individual sphere enclosed by
wetting film ~compare Ref.@12#!. This observation amount
to a useful check of the numerical procedure.

As a first example, in Fig. 2 we present the numeri
results for a wetting layer enclosing two spheres of rad
R520s. For our particular choice of interaction paramete
at coexistenceDm50 the wetting film on each of the singl
spheres alone exhibits a first-orderthin-thick transition
~which is the remnant of the first-order wetting transition
the corresponding planar substrate; see Fig. 8~a! in Ref. @12#!
at Ttt* 5kBT/e'1.271 ~which corresponds toTtt /Tc'0.9
whereTc is the critical temperature of gas-liquid coexisten
in the bulk!. The planar substrate, i.e., a single sphere in
limit R→`, exhibits a genuine first-order wetting transitio

FIG. 2. Morphologies of liquidlike wetting layers on two adja
cent, identical spheres with radiusR520s. The center-of-mass dis
tance between them isD550s. The pictures show cross section
through the system defined by the planey50; the system is rota-
tionally symmetric around thez axis ~see Fig. 1!. The thick full
lines denote the liquid-vapor interface, the thin dashed lines
surfaces of the spheres.~a! and ~b! layer configuration with and
without liquid bridge, respectively, for the temperatureT*
5kBT/e51.3.Ttt* and at liquid-vapor coexistenceDm50. Be-
cause of its higher free energy, the configuration without bridge
metastable~cf. Fig. 4!. These configurations are characterized
the interaction potential parametersu356.283es3, u950.838es9,
andds5s. The temperature is above the thin-thick transition te
peratureTtt* '1.271 for each single sphere. In~c! the interaction
parameters andD are the same, but the temperatureT* 51.2 is
below the thin-thick transition temperatureTtt* , so that the wetting
layer around a single sphere is thinner than in~a! and ~b!. Also
at this temperature the bridge configuration is the stable
~cf. Fig. 4!.
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~with the film thickness jumping to a macroscopic value! at
Tw* '1.053 (Tw /Tc'0.75, Ttt /Tw'1.21). Figure 2~a! de-
picts a typical solution with a bridge, here for a separat
a5D22R510s (D550s) and the thermodynamic param
etersT* 51.3.Ttt* andDm50, i.e., at liquid-vapor coexist
ence. The solution without a bridge for the same choice
parameters is shown in Fig. 2~b!. The latter solution has a
higher free energy than the former one. Therefore the s
tion with bridge is thermodynamically stable, whereas
solution without bridge is metastable. For the solution wi
out a bridge the distortion of the liquidlike layer around o
sphere due to the presence of the other sphere is not vis
Finally, Fig. 2~c! displays the wetting film morphology fo
the stable state with bridge at the temperatureT* 51.2, i.e.,
below the thin-thick transition temperatureTtt* . ~We note
that the thin-thick transition temperatureTtt for each sphere
is slightly shifted by the presence of the second sphere. H
ever, as already pointed out in Ref.@23#, this effect is negli-
gibly small.! In any case, the difference between nonlo
and local theories is very small. This latter result is in acc
dance with the findings for the comparison between the n
local and local descriptions of the three-phase contact line
a homogeneous substrate, and of the wetting layer morp
ogy on a chemically structured substrate~compare Ref.@26#!.
For this reason, henceforth we only consider the local the

Figure 3 shows another pertinent example. Here we st
the wetting layer morphology for two larger spheres of
dius R550s as a function of the undersaturationDm along
the isothermT* 51.2. The interaction potential paramete
are the same as for the previous first example, and the s
ration of the surfacesa is 20s (D5120s). At coexistence
each single sphere exhibits a first-order thin-thick transit
at Ttt* '1.191~i.e., Ttt /Tc'0.84 andTtt /Tw'1.13). In anal-
ogy to the prewetting line on a homogeneous substrate t
is a line of thin-thick transitions@T,Dm tt(T)# which inter-
sects the liquid-vapor coexistence line at (T5Ttt ,Dm50)
~compare with Figs. 4 and 8~a! in Ref. @12#!. At the tempera-
ture T* 51.2.Ttt* considered here, the thin-thick transitio
occurs atDm tt* 5Dm tt /e'0.0103. Upon reducing the unde
saturation along the isotherm, starting at, e.g.,Dm* 50.05,
first the configuration with thin films and without bridge
stable@Fig. 3~a!#. For Dm<Dmbt ~bridging transition! with
Dmbt* '0.0235.Dm tt* (T) the solution with bridge become
stable, but the layers enclosing the spheres still remain
@Fig. 3~b!#. Upon further reduction ofDm, at Dm tt(T) the
second transition from a solution with bridge and thin film
to a solution with bridge and thick films@Fig. 3~c!# takes
place.@As before, concerning the value ofTtt* at coexistence,
the valueDm tt* (T) is also practically unchanged by the pre
ence of the second sphere—even for the bridge config
tion.# We note that for this choice of parameters and in
case of a solution with bridge andthin films @Fig. 3~b!#, the
profile h(z) exhibitssix turning points instead of only two a
for the case of a solution with bridge andthick films @Fig.
3~c!#. This rich curvature behavior is caused by the details
the effective interaction potential between the spherical s
strate surfaces and the liquid-vapor interface~see Sec. 2.3 in
Ref. @12#!, similar to the curvature behavior of the liquid
vapor interface, when it meets a homogeneous, planar
strate forming a three-phase contact line~compare Ref.@26#!.
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These features may also occur for a bridge configura
with thin films at coexistence andT,Ttt .

B. Phase diagram

The example presented in Sec. II A shows that besides
gas-liquid coexistence curveDm50 the T-Dm phase dia-
gram of the system contains two distinct lines of first-ord
phase transitions: a line of thin-thick transitions@T,Dm tt(T)#
on the single spheres~which is the remnant of the line o
prewetting transitions on the corresponding flat substrate
which is, as stated above, practically unshifted by the pr
ence of the second sphere! and a second,independentline of
bridging transitions@T,Dmbt(T)#. If one crosses the latte
along an isothermT5T0 approaching coexistence (T0 ,Dm
→0), at Dm5Dmbt(T0) a transition from a configuration

FIG. 3. Morphologies of liquidlike wetting layers on two adja
cent, identical spheres with radiiR550s andD5120s, and for the
same choice of interaction parameters as in Fig. 2. The thick
lines denote the liquid-vapor interface, the thin dashed lines
surfaces of the spheres. These pictures magnify the region betw
the spheres. The temperature isT* 51.2, which is above the thin-
thick transition temperatureTtt* '1.191 at coexistence for a singl
sphere, and the pictures differ with respect to the undersatura
Dm* 5Dm/e50.05 in~a!, 0.015 in~b!, and 0.01 in~c!. Between~a!
and~b!, at Dmbt* '0.0235 the system undergoes a first-order tran
tion from the state without bridge to the state with bridge, and
Dm tt* '0.0103 between~b! and~c! there is a thin-thick transition of
the wetting layer around the single spheres which is the remnan
the prewetting transition on the corresponding flat substrate~see
Fig. 4!. Note that in~b! there are six turning points (d) of the
profile h(z), whereas in~c! there are only two.
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without bridge @Dm.Dmbt(T0)# to a configuration with
bridge @Dm,Dmbt(T0)# occurs. The derivative]VS /]Dm
is discontinuous atDmbt , indicating that the bridging transi
tion is first order. Figure 4 shows theT-Dm phase diagram
for the two spheres withR520s for D550s (a510s). The
line of thin-thick transitions intersects the liquid-vapor coe
istence line atTtt* '1.271, with a finite, negative slope†com-
pare Fig. 8~a! in Ref. @12#‡. It extends into the vapor phas
region (Dm.0) of the phase diagram, and ends at a criti
point. The line of bridging transitions also intersects the
existence line with a finite, negative slope. On the other e
within our sharp-kink interface model, it happens to be
off at that metastability line in the phase diagram at wh

FIG. 4. Temperature-undersaturation phase diagram of we
layer configurations for two spheres withR520s at afixeddistance
D550s (a510s). The interaction potential parameters are t
same as in Fig. 2. The three configurations shown in Figs. 2~a!–2~c!
are located at the respective thermodynamic statesa to c (l). The
line of liquid-vapor coexistenceDm50 separates the region whe
in the bulk the vapor phase is stable and the liquid phase is m
stable (2Dm,0) from the region where the liquid phase is stab
and the vapor phase is metastable (2Dm.0). The dotted ‘‘meta-
stability line’’ (ml) separates the region where the liquid phase
the bulk is still metastable@2Dm.2Dmml(T)# from the region
where only the vapor phase is stable in the bulk@2Dm,
2Dmml(T)#. The liquidlike layer on each individual sphere exhi
its a first-order thin-thick transition at2Dm52Dm tt(T) ~dashed
line tt). This line intersects the liquid-vapor coexistence line
Ttt* '1.271 and ends at a critical point (d) in the vapor phase
region: Ttt,c* '1.275 and 2Dm tt,c* '20.0144. For the presen
choice of interaction potential parameters, at lower temperat
and larger undersaturations2Dm52Dmbt(T) ~full line bt) the
first-order bridging transitions between the configurations w
bridge @2Dm.2Dmbt(T)# and without bridge @2Dm,
2Dmbt(T)# occur. This line intersects the coexistence line linea
Within the sharp-kink approximation the line of bridging transitio
happens to be cut off by the ‘‘metastability line’’; within a mor
sophisticated approach the linebt is expected to end at a critica
point too. The locations of the thin-thick transitions in the pha
diagram are practically not affected by the presence of the bri
The dash-double-dotted lines (2••2) are metastable extensions
the thin-thick and bridging transition lines, respectively. The da
dotted linep (2•2) is the prewetting line for the correspondin
planar substrate. It joins the liquid-vapor coexistence lineDm50
tangentially at the first-order wetting transition temperatureTw*
'1.053 (m), and ends at a critical point (j) in the vapor phase
region. For a discussion of the effects of fluctuations on this me
field phase diagram, see the main text.
-

l
-
d,
t

the second minimum of the bulk free energy at a high flu
density@Eq. ~2.10!# ceases to exist, so that for larger unde
saturations the liquid phase is not even metastable. With
more sophisticated approach, e.g., by seeking the full m
mal density distributions of Eq.~2.5!, the line of bridging
transitions is expected to end in a critical point too.~Con-
cerning the effect of fluctuations on these mean field pred
tions, see the following paragraph.! The line of bridging tran-
sitions is entirely located in the region where the liquidli
films on the spheres are thin. Moreover, the effect of
presence of the liquid bridge on the line of thin-thick tran
tions is negligibly small. In Fig. 4 the relative location of th
bridging transition line and the thin-thick transition line co
responds to our specific choice of the interaction poten
parameters as well as the chosen size of and distance
tween the spheres. Changing these parameters will lea
shifts of these lines and, possibly, to different topologies
the phase diagram. Here we refrain from exhaustingly p
senting all possibilities which can occur according to Re
@22# and @23#.

Since the liquid volume enclosed by the interfaceh(z) is
quasi-zero-dimensional, fluctuation effects destroy the sh
first-order phase transition~see Refs.@27# and @28#!. In Sec.
4 of Ref. @12#, it has been extensively discussed how fin
size effects smear out the thin-thick transition such that
thickness increases sharply but continuously within a ra
dm aroundDm tt(T); these results apply analogously to th
present case. Using similar approximations we obtain a ra
dm betweendm* '0.004 forT* 51.16 anddm* '0.02 for
T* 51.26 over which thebridging transitions shown in Fig.
4 are smeared out aroundDmbt(T). Thus, close toDm50,
quasi-first-order thin-thick transitions are clearly visibl
However, for larger values ofDm they become progressivel
smeared out, such that their critical points predicted by m
field theory are erased by fluctuations.

IV. EFFECTIVE FILM-INDUCED
INTERACTION POTENTIAL

A. Shape of the effective potential, metastability, and
asymptotic behavior

In the following we change our point of view: we vary th
distanceD between the centers of mass of the spheres ins
of the thermodynamic parametersT andDm. Figure 5 shows
the grand canonical potentialVS corresponding to the wet
ting layer morphologies for the caseR520s and T* 51.2
@Fig. 2~c!# as a function of the separationa5D22R for
several values ofDm. VS is the minimum ofVS@h(z)# @Eq.
~2.13!# for the given set of parametersT, Dm, and D52R
1a. For each value ofDm there are two branches of the fre
energy; one corresponding to the solution without brid
which for the caseR520s considered here exists only fo
a*0.15R, and the other corresponding to the solution w
bridge which exists up toa'0.65R and a'0.6R for Dm*
50 and Dm* 50.01, respectively. At a certain valueD
5Dbt or, equivalently,a5abt , which are functions ofDm, a
first-order phase transition occurs with a discontinuous
rivative ]VS /]D between solutions with and without bridge
The main effect of increasing the undersaturationDm is that
the free-energy curves are rigidly shifted upward. This sh
is approximately proportional toDm and larger in the case o
the solution with bridge, resulting in the dependence ofDbt
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on Dm. The values ofVS shown in Fig. 5 are obtained
within the local theory. The nonlocal theory yields the sa
functional dependenceVS(D), but with a slight and rigid
shift of the free-energy curves, relative to the results of
local theory, of the order of 0.1% and of the same sign a
size for both the solutions with and without bridge. Finit
size effects again destroy the sharp first-order bridging tr
sition; we obtain a rangedD;0.1s ~corresponding todD
;0.005R), over which the bridging transitions shown in Fi
5 are smeared out.

FIG. 5. ~a! Dependence of the grand canonical potentialVS on
the separationa5D22R and the undersaturationDm for the same
system as in Figs. 2~c! and 4, i.e., forR520s andT* 51.2,Ttt* .
The dots indicate the end points of metastable branches. Fa
,2ds ~with ds5s50.05R here! the excluded volumes around th
spheres overlap. In the limitD→` the stable solution is the on
without a liquid bridge; in this limitVS(D→`)52VS

(1) is twice
the free energy of a single sphere surrounded by a wetting laye
the separationDbt or abt , where the two free energy branches i
tersect for a givenDm, a first-order morphological phase transitio
between a configuration with a liquid bridge and a state with
bridge takes place. The equilibrium thickness of the homogene
wetting layer around a single sphere isl 0'1.3s, so thatDbt /(R
1 l 0)'2.39; the slight deviation from the prediction of Eqs.~4.2!
and~4.3! is due to the still rather small size of the spheres. We n
that, in contrast to the case shown here, forT.Ttt the free energy
curve corresponding to the solutions without bridge approache
asymptote frombelow. ~b! Same as in~a!, showing the excess fre
energy VE5VS22VS

(1) . In this presentation the results for th
solutions without bridge and for different undersaturationsDm col-
lapse onto a single line.VE(D→`) decays asD26.
e

e
d

n-

The thermodynamic states which are located on the m
stable branches of the free-energy curves survive during
average lifetimet't0 exp(DVS/kBT), where DVS is the
height of the energy barrier that separates the metast
from the stable branch, andt0 is a characteristic microscopi
time scale for the dynamics associated with the transit
from a metastable to a stable wetting layer configurati
The energy barrier is highest in the vicinity of the bridgin
transition, and vanishes near the ends of the metast
branches. An estimation of the energy barrier height yie
e.g., DVS'75e for Dm50 and D550s (a50.5R), and
with kBT;e it follows that exp(DVS/kBT);1032, i.e., the
metastable unbridged state fora50.5R near the bridging
transition remains stable practically forever. However,
e.g.,a50.2R, one has exp(DVS/kBT);1011, so that witht0
;1 ps . . . 1 ns one mayobserve a decay of the metastab
states near the ends of the metastable branches within
onds or minutes. Thus the change of the morphology of
wetting films is expected to exhibit pronounced hystere
effects as function ofD.

Obviously, in the limit of large separationD→` ~in
which only the configuration without a bridge is stable! the
grand canonical potentialVS(D) approaches the limiting
value 2VS

(1) , corresponding to the free energy of two ind
vidual spheres, each surrounded by a wetting layer. It is c
venient to separate this constant contribution 2VS

(1) from the
grand canonical potentialVS of the system, and thus to de
fine an excess free energyVE(D)5VS(D)22VS

(1) which
contains all contributions from the wetting-layer-induced
teraction between the two spheres. In the limitD→`, i.e., in
the absence of a liquid bridge, this excess free energyVE(D)
decays asD26 @see Eq.~2.22! and Sec. V#. We note that for
the example shown in Fig. 5 the coefficient of this leadi
order ispositive, i.e., the effective potential in the absence
a liquid bridge isrepulsive. This is owed to the choiceT
,Ttt for this example: the spheres disfavor the adsorption
thick liquid films and the presence of the second sphere w
its surrounding liquidlike layer leads to an additional cost
free energy which diminishes for increasingD. For the
choice T.Ttt , i.e., if the spheres favor the adsorption
liquid @e.g., forT* 51.3 as in Figs. 2~a! and 2~b!# the coef-
ficient of D26 is negative, and the effective interaction is
attractive. However, in the presence of a liquid bridge, i.e
for sufficiently small values ofD, the effective potential
shows the same qualitative behavior as in Fig. 5 for the c
of thick wetting layers (T* 51.3.Ttt* ) as well as for the
larger spheres (R550s) with thin or thick films.

B. Effective interaction potential for large spheres

In this subsection we consider the limiting case that
sphere radiusR is much larger than the diameters of the
solvent particles, and that the separationsa between the sur-
faces of the spheres are proportional toR: R@s, s!a'R.
For such large separations as compared tos the contribu-
tions Vsl @Eq. ~2.21!#, Vei @Eq. ~2.16!#, and F @Eq. ~5.1!#
become vanishingly small relative to the contributionsV lg
@Eq. ~2.18!# and Vex @Eq. ~2.14!#. For the case describe
aboveV lg andVex scale proportional to the surface area
the spheres, i.e.,;R2, whereas fora/s→`, R/s→`, and
a/R finite, F(D;R) remains finite,;esssss

6 rs
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portionality constant of the order 1. Analogously, in t
same limit Vei22Vei

(1) @Eq. ~2.16!# and Vsl22Vsl
(1) @Eq.

~2.21!# are determined by finite terms;Drr les6and
;Drrses fss f

6 , and of terms;r l
2es6 and;r lrses fss f

6 , re-
spectively, each with a proportionality constant of order
Therefore measured in units of 8pR2 the unbridged branch
of VE in Fig. 5~b! vanishes in the limitR→`. Moreover, on
this scale the excluded volume at smalla disappears from the
figure, too, becauseds /R→0.

Figure 6 shows the excess effective interaction poten
VE in the limit of large spheres for the caseDm50, i.e., at
two-phase coexistence in the solvent. In this limit and
Dm50, V lg is the only relevant contribution toVS because
Vex(Dm50)50. Accordingly, in this case the bridging tran
sition is determined by the equality of the surface areas
the liquid-vapor interfaces for the unbridged and bridg
configurations. From this condition, and from dimension
analysis, it follows that for large spheresDbt(Dm50) is
determined by the equation

8p~R1 l 0!2s lg
(p)58p~R1 l 0!2s lg

(p) f S Dbt

R1 l 0
D , ~4.1!

where f is, for dimensional reasons, a universal function
D/(R1 l 0) alone, which describes the surface area of
bridged configuration;l 0 is the equilibrium wetting layer

FIG. 6. Excess free energyVE5VS22VS
(1) for Dm50 in the

limit of large spheres, i.e.,R@s, s!a'R. In this limit the excess
free energy branch for the unbridged solution vanishes if it is m
sured in units of 8pR2. Off two-phase coexistence, i.e., forDm
Þ0, the branch for the bridged solution is determined only by
contributionsV lg @Eq. ~2.18!# andVex @Eq. ~2.14!# to the free en-
ergy. At two-phase coexistenceDm andVex vanish, so thatVE is
solely determined byV lg . Therefore within the local theory with
V lg

( loc) @Eq. ~2.19!# the bridged solution is a minimal area surfac
i.e., its mean curvature is zero. Sincea@ds's the excluded vol-
ume at smalla disappears from the figure. Therefore, compa
with the full curve in Fig. 5~b! the potential curve here is effectivel
shifted to smaller values ofa. Moreover, the actual minimum of th
effective interaction potential at smalla*s ~compare Fig. 5!,
which is due to the influence of the contributionsVei andVsl , is
not visible on this scale either. The critical separation for the bri
ing transition (l) is given byabt /R'0.32@Eqs.~4.2! and~4.3!#. If
the thermodynamic state of the system is driven into the
coexistence regionDm.0, the whole excess free energy branch
the bridged solution is shifted upward~compare Fig. 5!. For any
finite value ofDm, in the limit R→` there is no longer any bridg
ing transition~see the main text!.
.

al

r

f
d
l

f
e

thickness on a single sphere. Since the line of bridging tr
sitions lies below the line of thin-thick transitions,l 0 remains
microscopically small at the bridging transition~Fig. 4!.
Therefore one has

Dbt~Dm50!5l~R1 l 0!, ~4.2!

with a universal number

l'2.32 ~4.3!

determined byf (l)51 ~compare Fig. 6!. If one applies this
reasoning to Fig. 5, one findsl'2.39. Therefore, even fo
R520s this macroscopic approximation leads to a surpr
ingly small error of only 3% forDbt(Dm50). Accordingly,
in Fig. 5 the full curves corresponding toDm50 closely
resemble the ones in Fig. 6 describing the case of la
spheres. The only differences appear for small separationa,
where the bridged branch linearly extends down to its m
mum valueVE /„8p(R/s)2

…'20.0227e at a/R50 ~Fig. 6!.
Only in this range of separations does the effect of the c
tributions Vei and Vsl become significant, leading to th
deeper minimum visible in Fig. 5. Thus forDm50 and large
R the dependence of the effective interaction potential oR
for the bridged configuration is captured by the indicat
rescaling of the axes in Fig. 5~b!. However, our numerica
analysis shows that the smallness of the deviations betw
the macroscopic description valid forR@s and the actual
results forR520s is somewhat fortuitous. Whereas the d
pendence ofDbt(Dm50) on R is indeed weak, the shape o
the potential~for Dm50) reduces to that shown in Fig.
only for R larger than several hundreds and, surprisingly,
for R up to 20 to 30s, with the deviations being maximal fo
R'100s.

Off coexistenceDVb5Vb(r l)2Vb(rg)'DmDr is posi-
tive so that Eq.~4.1! has to be augmented correspondingl

8p~R1 l 0!21
8pDVb

3s lg
(p)

„~R1 l 0!32R3
…5A1

DVb

s lg
(p)

V~L!,

~4.4!

whereA and V(L) @Eq. ~2.15!# are the area of the liquid
vapor interface and the volume of the liquid, respectively,
the bridged configuration. They are obtained by insert
into Eqs.~2.19! and~2.15! that profileh(z) which solves the
differential equation determining the minimum ofV lg@h#
1Vex@h# together with the appropriate boundary condition
By splitting off a factor (R1 l 0)2 from A and (R1 l 0)3 from
V(L), dimensional analysis shows that up to terms; l 0 /R
the critical distance for the bridging transition is given by
universal scaling functionL,

Dbt~Dm!5LS DrDmR

s lg
(p) D R, ~4.5!

with L(0)5l. Thus off coexistence the critical bridgin
transition depends, apart from an explicit factorR, on R and
Dm via the scaling variableDrDmR/s lg

(p) . This property is
shared by the whole bridged branch of the effective inter
tion potential. Thus increasingR for a fixed undersaturation
Dm has the same effect as increasingDm for fixed R. From
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Fig. 5~b!, in which the unbridged branch will disappear
the limit R@s, one infers that the range and depth ofVE
decrease for increasingR at fixed undersaturationDm. The
behavior ofDbt and of the bridged branch of the effectiv
interaction potential off coexistence and forR→` is deter-
mined by the behavior of the scaling functionL(x) in the
limit x→`. Our numerical data indicate thatL(x→`),2,
so that due to the geometric constraintD>2R there is no
bridging transition, and the bridged branch of the effect
potential vanishes for any value ofDm in the limit R→`.
The cost in free energy due to the excess contributionVex
suppresses the formation of a liquidlike bridge in the case
macroscopically large spheres. In turn, this means that
any finite value ofDm there is a large but finite critica
radiusRc for which the critical separationabt for the bridg-
ing transition attains the valueabt50, such that forR.Rc
there is no bridging transition. The determination ofRc re-
quires one to analyze the full dependence ofL on the scaling
variable x. This, however, implies such a large numeric
effort that it is beyond the scope of the present paper.

V. DISCUSSION

A. Total interaction potential

The bare dispersion interaction between the two sphere
not included in Eq.~2.5!. According to Hamaker@29#, this
contribution is given by

F~D;R!52
Ass

12
X 4R2

~D22R!~D12R!
1

4R2

D2

12 lnS ~D22R!~D12R!

D2 D C ~5.1!

as the dispersion interaction between two identical sphere
radius R at a center-of-mass distanceD. In the limit a/R
!1, wherea5D22R @see Fig. 1~a!# is the smallest separa
tion between the surfaces of the spheres, Eq.~5.1! reduces to

F~D52R1a;R@a!'2
Ass

12

R

a
, ~5.2!

which corresponds to the Derjaguin approximation, wher
F(D@R;R)5216AssR

6/(9D6). Thus, except for the
D-independent bulk contribution Vol(Vf)Vb(rg), the total
grand canonical potential of the system is

V tot~D;R!5VS~D;R!1F~D;R!, ~5.3!

where VS(D;R) is given by the minimum value
min$h(z)%„VS@h(z)#… for given D and R @Eqs. ~2.13! and
~2.23!#; in analogy toVE we define the excess total fre
energyVE,tot5V tot22VS

(1) . Ass is the Hamaker constan
appertaining to the bare dispersion interaction between
particles in the spheres. In the case of pairwise additivity
the molecular interactions and in the absence of retarda
effects, one hasAss54p2esssss

6 rs
2 if the interaction potential

between two individual molecules in the spheres is given
a Lennard-Jones potential@Eq. ~2.4!#, with the parametersess
andsss. Typically Ass is of the order of 10219 J, or, equiva-
lently, (10–100)e. If the vacuum between the spheres is
e

f
or

l

is

of

s

e
f
n

y

-

placed by a medium of condensed matter the interaction
tween the spheres is screened@30#. In our present model this
medium is the bulk vapor phase modified by the presenc
the liquidlike films adsorbed on the spheres and the scre
ing effect is described microscopically by the function
V@r(r )#.

In Refs. @31# and @32# this additional screening effect—
due to spherical shells of adsorbed, homogeneous layers
rounding spherical particles—on the dispersion interact
between the latter immersed in another homogeneous
dium was calculated macroscopically. Beyond molecu
scales these results should closely correspond to the con
ration without liquid bridge discussed herein, because
deviation of the spherical shape of one wetting layer due
the presence of the second sphere is very small. Indeed
interaction energy calculated in Refs.@31# and @32# is prac-
tically the same as the sum of theD-dependent contributions
in Vei @Eq. ~2.16!# and Vsl @Eq. ~2.21!# for configurations
without bridge—for these configurationsV lg andVex do not
contribute to the dependence ofVS on D—and the direct
dispersion interactionF(D;R). In Ref. @31# the total disper-
sion interaction is shown to be always attractive if the H
maker constantsAi j corresponding to the interaction betwee
any two mediai and j are chosen such thatAi j 5AAii Aj j .
Although the effective interaction induced by the wettin
layers shown in Figs. 5~b! and 7 for the configuration with-
out bridge is repulsive, we note that the sumV tot of this
interaction and of the bare dispersion potentialF(D;R) is
also attractive if we choose the Hamaker constant in E
~5.1! accordingly, i.e.,Ass5As f

2 /A ~Fig. 7!. Therefore our
results are consistent with those obtained in Ref.@31#. Since
only effective interactions between finite volumes enter in
the total excess interaction potentialVE,tot , and these effec-
tive interactions decay asD26 in the limit of large separa-

FIG. 7. Excess free energyVE5VS22VS
(1) ~dashed lines! and

excess total free energyVE,tot5VS22VS
(1)1F ~full lines! for

Dm50. HereT* 51.2 andR520s, so that the dashed lines ar
identical with the full lines in Fig. 5~b!. The dots indicate the end
points of metastable branches. The parametersess and sss of the
pair potential between the particles forming the spheres are ch
such that the conditionAs f5AAAss for the corresponding Hamake
constants is satisfied. Although the wetting-layer induced poten
for the solutions without bridge isrepulsive, the total interaction
potential including the bare dispersion potential isattractive. For
small separationsa or D the bare dispersion potential dominates.
the limit D→`, i.e., for the configurations without bridge,VE and
VE,tot decay asD26, as expected for dispersion interactions.
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tions D, the same holds forVE,tot .
Figure 5 shows that as soon as the wetting films snap

liquidlike bridge, whether it is stable or metastable, there
an attractive wetting-layer-induced force2]VE /]D that
pulls the spheres together. From Fig. 5 one can infer that
attractive force is of the order of 40e/s in the range between
a'4s ~i.e., 0.2R for R520s discussed in this figure! and
a'10s (0.5R), where the effective potential varies almo
linearly. At the small separationamin'2.5s the effective
potentialVE induced by the bridgelike wetting layer is min
mal, and the wetting-induced force is zero. Finally,
smaller separations the interaction is repulsive, leading
stabilization of the spheres atD5Dmin52R1amin . Within
the rangea!R the bare, direct dispersion interaction b
tween the spheres@Eqs.~5.1! and~5.2!# gives rise to a force
Fbare(a)'2AssR/12a2. The estimateAss'4p2es f

2 ss f
12rs

2/
es6;400e for the case of pairwise additive interaction
without retardation follows from the ansatzAs f5AAAss, so
that the bare dispersion force in our example withR520s is
Fbare(a)'2670es/a2. Therefore, in the range where th
bridge-induced force is almost constant (4s&a&10s) the
direct, bare dispersion force decays from approximat
240e/s ~which is of the same order of magnitude as t
bridge-induced force! to approximately26e/s, whereas for
smaller separations it becomes the dominant force.

B. Relevance for force microscopy and scattering

Our model calculations can be tested experimentally
force microscopy. This can be done by suitably fixing o
sphere in the fluid and by attaching the second one to the
of a force microscope. This kind of atomic force microsco
colloidal probe technique was applied successfully for pr
ing the effective interaction potential between a single c
loidal particle and a planar surface~see, e.g., Refs.@33–35#,
and the review in Ref.@36#! and its interaction with radiation
pressure@37#; this setup can be adapted to a controlled te
perature environment@38#, facilitating studies of the reper
cussions of temperature-induced phase transitions on th
fective interaction potential. In the present context it
important to note that this kind of force measurement w
already also extended successfully to an analysis of the
fective interaction between pairs of spheres@36,39#, main-
taining the nm spatial resolution which had been achie
for the case of a sphere near a planar wall.

Alternatively, both spheres can be positioned by opti
tweezers, and the force law can be inferred by optica
monitoring their dynamics after switching off the tweeze
This technique, which avoids perturbations induced by
tips of the force microscope to which the spheres are
tached, allows one to measure the functional form of
effective interface potential with 60-nm spatial resoluti
and 0.2kBT energy sensitivity over a range of 6mm and
5kBT, respectively@40#, or with sub-kBT energy and 15-nm
spatial resolution@41,42#.

If the material of the colloidal particles is chosen such t
it can be magnetized by external fields, the so-called ch
ing technique can be used as still another alternative to s
repulsive parts of the corresponding effective interaction
tential with nm resolution@43#. The external fields lead to th
formation of chainlike structures in which the particles a
a
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range themselves within a periodic array; the lattice spac
can be determined accurately by light scattering. This allo
one to infer the effective pair potential—in the absence of
external fields—which balances the known induced dipo
attraction.

Finally we note that small angle neutron scattering, t
bidity measurements, and dynamic light scattering, in co
bination with theoretical support, yield access to the effect
interaction potential between colloidal particles~see, e.g.,
Ref. @44#!. The theoretical interpretation of such structu
factors as obtained by neutron scattering can be eased
siderably by suitable scattering-length matching~see, e.g.,
Ref. @45#!.

These techniques provide both the energy and spa
resolution required to probe the phenomena discussed in
previous sections and to test our theoretical predictions.
will be possible to achieve a spatial resolution down to
scales of the diameter of the solvent particles, it will tur
out that at separations between the spheres which are c
parable withs the actual effective interaction potential e
hibits an additional oscillatory contribution due to packin
effects which decays exponentially on the scale ofs @46#. In
order to obtain these oscillations one would have to resor
density functional theories which are more sophisticated t
the one in Eq.~2.5!. This, in turn, would make it much more
difficult to obtain the bridgelike configuration, to map out th
complete phase diagram, and to obtain results for la
spheres. According to Sec. IV B, forR@s and at two-phase
coexistenceDm50 the bridging transition occurs at dis
tancesa which are proportional toR. In this case, due toR
@s, the effective interaction potential will be practically un
affected by this oscillatory contribution for the vast portio
s!a!abt of the range of the effective interaction potentia

C. Relevance for charge stabilized colloidal suspensions

Whereas the kinds of experiments considered in Sec. I
are focused on two individual spherical particles, in Sec. I
discussed that the effective interaction potential enters
the collective behavior of colloidal suspensions, such that
bridging transition may trigger flocculation. If colloidal sus
pensions would be governed by dispersion forces alone, m
of them would flocculate even in the absence of the wetti
induced forces discussed here, because the dispersion f
generate the so-called primary minimum in the effective
teraction potential close to contact. Since this minimum
much deeper thankBT the colloidal particles would simply
stick together permanently. This effect, which is undesi
for many applications, can be avoided by endowing the p
ticles with electrical charges, which adds a screened C
lomb repulsion between the charged particles. As a res
such charge-stabilized colloidal suspensions are chara
ized by effective interaction potentials in which a substan
energy barrier separates the aforementioned primary m
mum from a second, much more shallow minimum at larg
distances. Since this potential barrier is typically large co
pared withkBT, the phase behavior of the colloidal particle
is practically independent of the primary minimum forme
by the dispersion forces, and determined by the shape o
potentialoutsidethe barrier. As demonstrated in Figs. 5 a
7, the range of the wetting-induced forces is about 0.55R, in
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good agreement withDbt'2.32(R1 l 0) @see Eqs.~4.2! and
~4.3!#. On the other hand, the position~and height! of the
aforementioned energy barrier depends sensitively on
size of the total charge on the spheres, the amount of sa
the solvent, and the dispersion forces and can be varied
a wide range. With a high salt concentration the barrier
sition can be as small as a few tens of nm. Thus under s
circumstances the wetting-induced interaction potent
would be relevant even for colloidal particles whose radii
only a few tens of nm.

D. Relevance for stericly stabilized colloidal suspensions

There is another class of colloidal suspensions for wh
the wetting-induced forces can be of practical importan
By coating the colloidal particles with polymers and b
matching the refractive indices of the colloidal particles a
the bulk fluid ~in our case study the vapor phase or, mo
realistically in the present context, theA-rich liquid phase of
a binary liquid mixture acting as the solvent! the colloidal
particles behave effectively like hard spheres~see, e.g., Refs
@47# and @48#!. Through this index matching the sum of th
bare interaction potentialF(D;R) and the effective interac
tion potentialVsg , which would arise if the spheres wer
immersed in the homogeneous and unperturbed bulk solv
vanishes. Within our modelVsg is given by the expression in
Eq. ~2.21!, with r l replaced byrg , which is the density of
the bulk phase. Since the index matching works for the b
phase, it does not work for the wetting phase. As a con
quence the wetting-induced forces appear against a b
ground effective potential of hard spheres. Therefore, for
class of colloidal suspensions the wetting phenomena
cussed here are expected to have a pronounced effect on
phase behavior. Within our model, for index-matched s
pensions thetotal effective interaction potential is given by

V tot,im~D;R!5V tot~D;R!2„F~D;R!1Vsg~D;R!…

5VS~D;R!2Vsg~D;R!, ~5.4!

and in analogy toVE andVE,tot we define

VE,im~D;R!5V tot,im~D;R!22V im
(1)~R!, ~5.5!

with VE,im(D→`;R)50 for the unbridged solutions. Figur
8 displaysV tot,im and VE,im as function ofa5D22R for
the same system as in Figs. 5 and 7.Vsg is about 30%
smaller thanVS for the unbridged solution and also a
proaches its asymptote 2Vsg

(1) from above. As before~see the
discussion of Fig. 7 above!, the resulting total effective in-
teraction between spheres in an index-matched bulk fluid
the state with liquid bridge is still attractive, and of the sam
order of magnitude as the bare dispersion interaction
tween the spheres, i.e., in the absence of the solvent.

VI. SUMMARY

We have obtained the following main results.
~1! Based on microscopic interaction potentials a

within a simple version of density functional theory@Eqs.
~2.5!–~2.9!# we have calculated the grand canonical poten
of a system of two spheres immersed in a bulk fluid ph
~Fig. 1!. The microscopic interactions are chosen such t
e
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the spheres ‘‘prefer’’ the adsorption of a second fluid pha
which is thermodynamically close to the bulk fluid phas
Accordingly, a single sphere immersed in the fluid is cove
by a homogeneous wetting layer of this second phase
thicknessl 0. These thin wetting layers covering the spher
lead to an effective wetting-induced interaction potent
VS(D) between the spheres. We have systematically de
mined the dependence ofVS on the distanceD between the
spheres in terms of the morphologyh(z) of the wetting film
enclosing the spheres@Eqs.~2.13!–~2.21!#. We find that the
shape of the effective interaction potentialVS(D) depends,
inter alia, on the effective interaction of two spheres im
mersed in the homogeneouswettingphase@Eq. ~2.21!#. This
contribution, which is independent ofh(z), is not incorpo-
rated in previous phenomenological models for this syst
@22,23#.

~2! The equilibrium interfacial profiles of the wetting lay
ers are determined numerically by minimizing the free e
ergy functionalVS@h(z)# in Eqs. ~2.13!–~2.21!. We have

FIG. 8. Same as in Fig. 5 but withV tot,im5VS2Vsg ~a! and
VE,im5V tot,im22V im

(1) ~b!. We again chooseT* 51.2, R520s,
and the interaction parameters as in the previous figures. The
indicate the end points of metastable branches. The total interac
potential for index-matched spheres and bulk fluid is againrepul-
sive: since the temperature is below the thin-thick transition te
peratureTtt the adjacent spheres ‘‘dislike’’ the presence of ad
tional liquid in their vicinity, and therefore it is energeticall
advantageous to separate them as much as possible.VE,im for the
solutions without bridge is smaller thanVE . However, for the
bridged solutions,VE,im and VE , as well as the correspondin
wetting-induced forces, are of almost the same size, respective
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calculated the rich structure of these equilibrium profi
~Fig. 3! for spheres of radiiR520s ~Fig. 2! and R550s
~Fig. 3!, wheres denotes the diameter of the solvent pa
ticles. As function of distanceD, temperatureT, and under-
saturationDm the system undergoes a first-order ‘‘bridgin
transition’’ between the two configurations shown in Fig.
For a fixed distanceD we have mapped out the phase d
gram of bridging transitions in theT-Dm plane ~Fig. 4!. It
turns out that the bridging transition differs from and to
large extent is independent of the thin-thick transition of
wetting layer on each single sphere which is a remnant of
prewetting transition on the corresponding flat substra
Thus one has to distinguish between the prewetting line f
first-order wetting transition on a planar substrate, the th
thick transition line for wetting on a single sphere, and t
bridging transition line for two spheres~Fig. 4!. At two-
phase coexistenceDm50 and forR@s, the bridging transi-
tion is determined by the equality of the surface areas of
interfaces in the bridged and the unbridged configuratio
leading to a universal ratioDbt(Dm50)/(R1 l 0)'2.32 for
the critical distanceDbt(Dm50) of the bridging transition a
coexistence ~Fig. 6 and Sec. IV B!. Off coexistence,
Dbt(Dm,R) is described by a universal scaling function@Eq.
~4.5!#.

~3! At large distances and depending on the tempera
relative to the thin-thick transition temperature on a sin
sphere the wetting-induced effective interaction potential
be either attractive or repulsive; in both cases it dec
;D26 for largeD. The bridging transition leads to a stron
break in slope of the effective interaction potential atD
5Dbt . This is the fingerprint of a cooperative phenomen
among the fluid particles whose degrees of freedom h
been integrated out~see Sec. I!. Metastable branches of th
s
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e
e
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e

e
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re
e
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n
e

effective potential give rise to pronounced hysteresis effe
~Fig. 5!.

~4! In the case that a bridge of the wetting phase conne
the spheres~i.e., D,Dbt) there is an attractive wetting
induced interaction~Fig. 5! that pulls the spheres togethe
Within a wide range of separationsa5D22R of the spheri-
cal surfaces this force is of the same order of magnitude
the bare dispersion interaction potentialF @Eq. ~5.1!# be-
tween the spheres. This bare interaction of two spheres~cor-
responding to the case that they are separated by vacu!
has to be added to the effective potentialVS to yield the total
interaction potentialV tot between the spheres which is a
tractive at large distances@Eqs.~5.1!, ~5.3!, and Fig. 7#.

~5! The wetting-induced force between spherical partic
is experimentally accessibledirectly through suitable force
microscopy or indirectly through scattering techniques~Sec.
V B!. Moreover, in Sec. V D we argue that this force infl
ences the phase behavior ofstericly stabilized, index-
matched colloidal suspensions. The total effective interac
potential for such a case is shown in Fig. 8; it is repulsive
large distances. The phase behavior ofchargestabilized col-
loidal suspensions~Sec. V C! is only affected by the wetting-
induced interaction potential if the screening length of t
Coulomb repulsion in the solvent is smaller thanabt5Dbt
22R'0.32R. Depending on the size of the charges, the s
concentration of the solvent, and the underlying dispers
forces, this criterion may be fulfilled even for colloidal pa
ticles whose radii are only a few tens of nm.
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APPENDIX: CONTRIBUTIONS TO THE FREE ENERGY

Our choice of interaction potentialsf(r ) @Eq. ~2.1!# and fs(r ) @Eq. ~2.4!# leads to the following expressions for th
contributions to the free energyVS ~with the thermodynamic limit already carried out!:

Vei@h~z!#52DrS r lE
0

`

dz„g1~z!1g2~z!…2E
0

`

dz„f 1~z!1 f 2~z!…D , ~A1!

with

g6~z!52w0s2
R1

s
2w0s2Xh2~z!

s2
1S z

s
6

D

2s D 2

2
R1

2

s2
11C

3FarctanXAh2~z!

s2
1S z

s
6

D

2s D 2

1
R1

s
C

2arctanXAh2~z!

s2
1S z

s
6

D

2s D 2

2
R1

s
CG , ~A2!

whereR15R1ds and

f 6~z!5
pu9

4
X1
7 S 1

~k61R!7
2

1

~k62R!7D 1RS 1

~k61R!8
1

1

~k62R!8D C
2pu3X 1

k61R
2

1

k62R
1RS 1

~k61R!2
1

1

~k62R!2D C, ~A3!
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with k65Ah2(z)1(z6D/2)2. The contributionV lg is given by

V lg@h~z!#52w0s3~Dr!2E
0

`

dzE
0

`

dz8X 1

y2
4 S qy2

6 1y2
4 ~2q21p2!13p2qy2

2 1p4

~p212y2
2 q1y2

4 !3/2
2pD

1
1

y1
4 S qy1

6 1y1
4 ~2q21p2!13p2qy1

2 1p4

~p212y1
2 q1y1

4 !3/2
2pD C, ~A4!

where the abbreviationsy6 , p, andq are defined by

y6
2 5s21~z6z8!2, ~A5!

p5h2~z!2h2~z8!, ~A6!

and

q5h2~z!1h2~z8!. ~A7!

The double integral in Eq.~A4! demonstrates the nonlocal functional dependence ofV lg on h(z).
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@4# B. Götzelmann, R. Evans, and S. Dietrich, Phys. Rev. E57,
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~1998!.

@38# I. Muševič, G. Slak, and R. Blinc, Rev. Sci. Instrum.67, 2554
~1996!.

@39# Y. Q. Li, N. J. Tao, J. Pan, A. A. Garcia, and S. M. Lindsa
Langmuir9, 637 ~1993!.

@40# A. E. Larsen and D. Grier, Nature~London! 385, 230 ~1997!.
@41# J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yod

Phys. Rev. Lett.82, 4352~1999!.
@42# R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yod

Phys. Rev. Lett.81, 4004 ~1998!; Macromolecules33, 177
~2000!.
,

,

@43# F. Leal-Calderon, T. Stora, O. Mondain-Monval, P. Poul
and J. Bibette, Phys. Rev. Lett.72, 2959~1994!; O. Mondain-
Monval, F. Leal-Calderon, J. Phillip, and J. Bibette,ibid. 75,
3364 ~1995!; O. Mondain-Monval, F. Leal-Calderon, and
Bibette, J. Phys. II6, 1313 ~1996!; T. D. Dimitrova and F.
Leal-Calderon, Langmuir15, 8813~1999!.

@44# R. Tuinier, E. ten Grotenhuis, C. Holt, P. A. Timmins, and
G. de Gruif, Phys. Rev. E60, 848 ~1999!.

@45# X. Ye, T. Narayanan, P. Tong, J. S. Huang, M. Y. Lin, B.
Carvalho, and L. J. Fetters, Phys. Rev. E54, 6500~1996!.

@46# M. Kinoshita, Mol. Phys.94, 485 ~1998!, and references
therein.

@47# P. N. Pusey and W. van Megen, Nature~London! 320, 340
~1986!.

@48# W. Poon, P. N. Pusey, and H. Lekkerkerker, Phys. World9, 27
~1996!.


